

NDIR GAS ANALYZER

DATA SHEET ZPA

OVERVIEW

This gas analyzer (ZPA) can measure the concentration of NO, SO₂, CO₂, CO, CH₄ and O₂ in sample gas. NO, SO₂, CO₂, CO and CH₄ are measured by non-dispersion infrared method (NDIR), while O₂ is measured by a galvanic fuel cell, paramagnetic sensor, or zirconia sensor.

Up to five components including O₂ can be measured.

ZPA also features its compact design that enables downsizing of measurement system, and simple structure with single-beam IR system that requires minimal maintenance.

ZPA is best suited to the measurement of exhaust gas from refuse incinerators, boilers, and various industrial furnaces.

1. Compact and lightweight

H133 × W483 × D382 mm, approximate 11 kg

2. Easy maintenance

Maintenance is easy due to the simple measurement unit of single-beam system adapted.

3. User-friendly operation

Clear and easy-to-read display of all five gas concentrations at once.

Simple status and maintenance messages.

4. Extensive functions

Various optional functions are available such as auto calibration control, atmospheric pressure correction, high and low concentration alarms, remote range switch, and range identification signal,etc.

SPECIFICATIONS

Standard Specifications

Principle of measurement:

NO, SO₂, CO₂, CO, CH₄;

Non-dispersion infrared-ray absorption method Single light source and single beams (single beam system)

O2;

Galvanic fuel cell O₂ analyzer (built-in) paramagnetic O₂ analyzer (built-in), or zirconia O₂ analyzer (externally installed TYPE: ZFK7)

Measurable gas components and ranges:

	Minimum range	Maximum range
NO	0-200 ppm	0-5000 ppm
SO ₂	0-200 ppm	0-10 vol%
CO ₂	0-100 ppm	0-100 vol%
СО	0-200 ppm	0-100 vol%
CH ₄	0-500 ppm	0-100 vol%
O ₂ (Built in fuel cell)	0–10 vol%	0–25 vol%
O ₂ (Built in	0–5 vol%	0-100 vol%
paramagnetic)	None	100–95 vol%
O ₂ (External zirconia)	0–5 vol%	0–25 vol%

- Max. 5 components measurement including O₂.
 For reverse range O₂ measurement, infrared gas measurement is not available; only the single range O₂ measurement is available.
- Measuring ranges are changeable between the specified minimum and maximum range
- Maximum rangeability. 1:10 (except O₂)
- Up to two ranges are available for each component
- For possible combinations of components and ranges, refer to Table1.

Measured value indication:

Digital indication in 4 digits

(LCD panel with LED back light)

- · Instantaneous value of each component
- Instantaneous value after O₂ correction (only in NO, SO₂, CO measurement with O₂)
- Average value after O₂ correction (only in NO, SO₂, CO measurement with O₂)
- O₂ average value

Analog output signals:

4 to 20mA DC or 0 to 1V DC, isolated internally from circuit and ground. Output lines are non-isolated each other.; 12 outputs max.

Allowable load 550Ω for 4 to 20mA DC

Allowable load $100K\Omega$ for 0 to 1V DC

* Refer to Table2 for the channel No. of displayed values and analog output signals.

Analog input signal:

For signal input from external O2 analyzer.

- (1) Signal from Fuji's Zirconia O_2 analyzer (TYPE: ZFK7)
- (2) 0 to 1V DC full-scale signal
- Input section is not isolated.
- $\ensuremath{^*}$ External O_2 analyzer should be purchased separately.

Digital output (Option):

1 form C contact (24V DC/1A, resistive load) Up to 15 outputs

Instrument error, calibration error, range identification, auto calibration status, solenoid valve drive for auto calibration, high/low limit alarm

* All relay contacts are isolated mutually and from the internal circuit.

Digital input (Option):

Voltage contact (12-24V DC, ≤15mA)

Up to 9 inputs

Remote range change over, auto calibration remote start, remote hold, average value reset.

* Isolated from the internal circuit with photocoupler.

Power supply:

Voltage rating; 100V to 240V AC Allowable range; 85V to 264V AC

Frequency; 50Hz/60Hz

Power consumption; 100VA max.

Operating conditions:

Ambient temperature; -5°C to 45°C

(40 $^{\circ}\text{C}$ max. when using two optical systems with 200 $\!V$

AC power source)

Ambient humidity; 90% RH max., non-condensing

Storage conditions:

Ambient temperature; -20°C to 60°C

Ambient humidity; 95% RH max., non-condensing

Dimensions ($H \times W \times D$):

133 x 483 x 382mm

Weight:

Approx. 11 kg

Finish color:

Front panel; Cool gray (PANTON 1C-F)

Enclosure:

Steel casing, for indoor use

Material of gas-contacting parts:

Gas inlet/outlet; Stainless steel 304

Sample cell; Stainless steel 304, chloroprene rubber

Infrared-ray transmitting window; CaF2

Internal piping; vinyl chloride, PTFE, Polypropylene Paramagnetic O₂ analyzer cell: Stainless steel 316

Fuel cell O2 analyzer cell: ABS resin

Gas inlet/outlet:

Rc1/4 or NPT1/4 internal thread

Purge gas flow rate:

1L/min (when required)

Life time of galvanic fuel cell O2 analyzer:

2 years

Standard Functions

Output signal holding:

Enables you to hold the output signal during calibration, to the value right before the calibration is started or the user-specified value. Values indicated on LCD will not be held.

Range changeover:

You can change between ranges by manually, automatically, or remotely.

Manual: by key operation

Auto: When the measured value reaches above 90% FS of the 1st range, the range automatically switches to the 2nd range. When the measured value goes down below 80% FS of the 1st range, the range automatically switches from the 2nd range to the 1st range.

Remote: by the contact input (option).

When the specified voltage (the remote range changeover signal) is applied on the contact dedicated for each component, the 1st range is effective. When no voltage is applied, the 2nd range becomes effective.

Optional Functions

Remote output holding:

Applying the specified voltage on the dedicated terminal allows you to hold the output signal to the last value or the user-specified value. Holding is effective while the voltage is applied. Values indicated on LCD are not held.

Range identification signal:

You can check which range is in use.

Auto calibration:

This function requires standard gas cylinders for calibration and solenoid valves for opening/closing the gas flow line. When this function is activated, the analyzer opens and closes the solenoid valve driving contact periodically at preset cycle.

Auto calibration cycle setting:

1 hour to 99 hours (in increments of 1 hour) or

1 day to 40 days (in increments of 1 day).

Gas flow time setting:

The time during which calibration gas is drawn

60 seconds to 900 seconds (in increments of 1 second)

Auto calibration remote start:

When you apply the specified voltage for 1.5 seconds or longer on the auto calibration remote start contact and then open the contact, one-time auto calibration starts. Calibration gas is drawn for the time set in the "gas flow time setting" for Auto calibration (see the previous item).

Auto zero calibration:

This function requires a standard gas cylinder for zero calibration and a solenoid valve for opening/closing the gas flow line. When this function is activated, the analyzer opens and closes the solenoid valve driving contact periodically at preset cycle. The cycle for the auto zero calibration and that for the auto calibration can be different. Auto calibration cycle setting:

1 hour to 99 hours (in increments of 1 hour) or

1 day to 40 days (in increments of 1 day).

Gas flow time setting:

The time during which calibration gas is drawn

60 seconds to 900 seconds (in increments of 1 second)

Upper/lower limit alarm:

When an instantaneous value has gone beyond the upper limit or below the lower limit, the analyzer closes the contact to emit an alarm signal. Up to four alarms are available.

Instrument error contact output:

The contact is closed if a device error occurs.

Calibration error contact output:

The contact is closed if a calibration error occurs.

Auto calibration status contact output:

The contact is closed during auto calibration.

O₂ correction:

Conversion of measured NO, CO, and SO_2 gas concentrations into values at reference O_2 concentration Correction formula:

$$C = \frac{21-On}{21-Os} \times Cs$$

C: Sample gas concentration after O₂ correction

Cs: Measured concentration of sample gas

Os: Measured O2 concentration

On: Reference O₂ concentration

(changeable by setting)

* The upper limit value of the fractional part in this calculation is 4. The result of calculation is indicated and transmitted as an analog output signal.

Average value after O2 correction and O2 average value calculation:

The analyzer can take measurement every 30 seconds, and calculate the moving average of instantaneous concentration after O2 correction or instantaneous O2 value per the period you set; in the range 1-59 min (in one minute increment) or 1-4 hour (in one hour increment). The analyzer transmits the moving average output every 30 seconds.

Average value resetting:

The above-mentioned output of average value is started from the initial state by opening the average value resetting input terminals after short circuiting for 1.5 sec or longer. Output is reset by input voltage and restarted by opening the terminal circuit.

Communication function:

RS-485 (9pins D-sub connector)

Half-duplex bit serial

Start-stop synchronization

Modbus RTU™ protocol

Contents: Read/Write parameters

Read measurement concentration and instru-

ment status

When connecting via RS-232C interface, an RS-232C ↔ RS-485 converter should be used.

Atmospheric pressure correction:

Measure atmospheric pressure and calculate compensation (for use, be sure to relieve the exhaust gas from analyzer to the atmosphere)

After atmospheric pressure correction;

Zero point: No influenced

Span point: The change is 0.5% measured value or less relating to the change of the atmospheric

pressure 1%.

Correction range: 700hPa-1050hPa

Performance

Repeatability:

±0.5% of full scale

Linearity:

1% of full scale

prior to atmospheric pressure correction (option)

Zero drift:

+2% of full scale/week

In the case of NO and/or SO₂ measurement below 500 ppm range, with the auto zero calibration used.

Span drift:

±2% of full scale/week

Response time (for 90% FS response):

1 to 15 sec electrical response. Within 10-30 seconds including replacement time of sampling gas.

Gas replacement time depends on the number of measuring components, and measuring range.

Interference from other gases:

Interference	CO ₂	CO	CH₄	SO ₂	NO
component	analyzer	analyzer	analyzer	analyzer	analyzer
CO 1000 ppm	≤ 1.0 % FS	-	≤ 1.0 % FS	≤ 1.0 % FS	≤ 1.0 % FS
CO ₂ 15%	-	≤ 1.0 % FS*1	≤ 1.0 % FS	≤ 1.0 % FS	≤ 1.0 % FS*2
H₂O saturation at 20°C	≤ 1.0 % FS	≤ 1.0 % FS*3	≤ 1.0 % FS	-	-
H₂O saturation at 2°C	-	≤ 2.0 % FS	-	≤ 2.0 % FS	≤ 2.0 % FS
CH ₄ 1000 ppm	≤ 1.0 % FS	≤ 1.0 % FS	_	≤ 20 ppm	_

^{*1: 0–200} ppm range: ≤ 2.0% FS

*3: 0–500 ppm range: ≤ 2.0% FS Interference for 0–200 ppm range may be greater than 2.0% FS depending on conditions.

Requirements for Sample Gas

Flow rate:

0.5 ±0.2L / min

Temperature:

0 to 50°C

Pressure:

10 kPa or less (Gas outlet side should be open to the atmospheric air.)

Dust:

100 μg/Nm³ or less in particle size of 0.3 μm or smaller Mist:

Unallowable

Moisture:

For sample gases NO, SO₂, CO (0-200 ppm range): less than 2°C saturation point.

For most other sample gases: less than standard room temperature saturation point.

Corrosive component:

1 ppm or less

Standard gas for calibration:

1) For measurement with IR and/or built-in O2 sensor Zero gas; Dry N2

Span gas; Each sample gas having concentration of 90 to 100% of its measuring range (recommended).

2) For measurement with external zirconia O2 sensor and when calibration is carried out on the same calibration gas line:

Zero gas; Dry air or atmospheric air (This is not allowed for CO₂ measurement.)

Span gas; For other than O2 measurement, each sample gas having concentration of 90 to 100% of its measuring range

* For O_2 measurement, 1–2 vol% O_2 , balance N_2

3) Reverse range O2 measurement

Zero gas; 100vol% O2

Span gas; 95.0 to 95.5 vol% O_2 , balance N_2

* If you use the reverse range O2 measurement, IR measurement is not available.

Installation Requirements

- Indoor use. Select a place where the equipment does not receive direct sunlight, wind and rain, or radiation from hot substances. If such a place cannot be found, a roof or cover should be prepared for protection.
- Avoid a place where unit receives heavy vibration
- · Select a place where atmospheric air is clean

EU Directive Compliance (**(**

LVD (2014/35/EU)

EN 61010-1

EN 62311

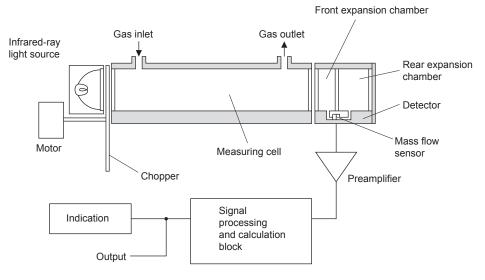
EMC (2014/30/EU)

EN 61326-1(Table 2)

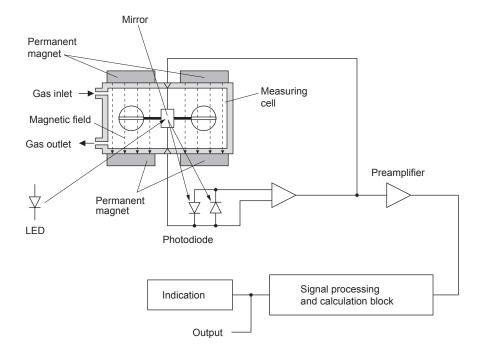
EN 61000-3-2(Class A)

EN 61000-3-3

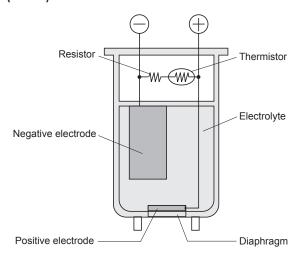
EN61326-2-3


RoHS (2011/65/EU+(EU)2015/863)

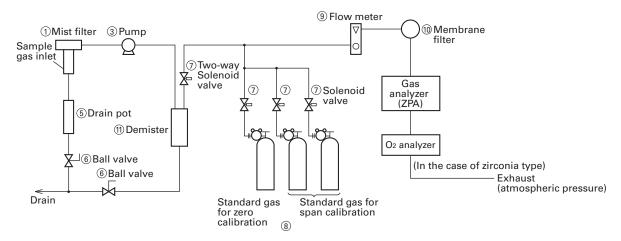
EN IEC63000


^{*2: 0–500} ppm range: ≤ 2.0% FS

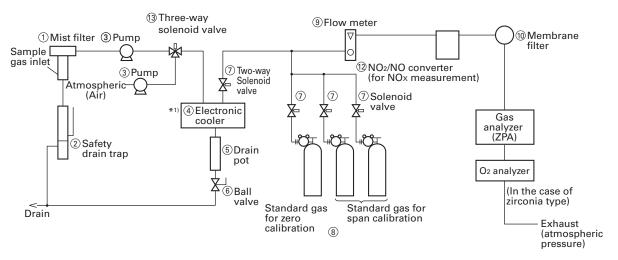
PRINCIPLE


NDIR sensor (for CO_2 , CO, CH_4 , SO_2 , NO)

Paramagnetic sensor (for O₂)



Galvanic fule cell (for O₂)



SYSTEM CONFIGURATION EXAMPLES

CO, CO₂, or CH₄ with low-level moisture

NO, SO₂, 0-200 ppm range CO, or other gases with high-level moisture

*1) For NO, SO₂, or 0–200 ppm range CO measurement, be sure to use an electronic cooler to keep the moisture content below the level saturated at 2°C.

List of sampling devices (example)

No.	Device name	Fuji's type
1	Mist filter	ZBBK1V03-0
2	Safety drain trap	ZBH51603
3	Pump	ZBG80
4	Electoric cooler	ZBC91004
5	Drain pot	ZBH13003 (Length 255mm)
6	Ball valve	ZBFB1
7	Two-way solenoid valve	
8	Standard gas for calibration	ZBM Y04-0 (Codes in to be selected depending on application)
9	Flow meter	ZBD42203
10	Membrane filter	ZBBM2V03-0
11)	Demister	ZBH35003
12	NO ₂ /NO converter	ZDL02001
13	Three-way solenoid valve	

Note) The above is a typical configuration example. As configuration may differ depending on measuring objects, please consult us.

CODE SYMBOLS

1			000ri=+1			not-	1 2 3 4 ZPA	5 6 7	7 8 2 -	9 10	11 1	2 13	_ [1151	16 1	7 18	19 2	0	212	22 23	24 25
igit 4	<snecifi< td=""><td></td><td>escription tructure></td><td></td><td></td><td>note</td><td>IZIPIA</td><td>P</td><td>14</td><td>1</td><td>H</td><td>H</td><td>-</td><td>++</td><td>+</td><td>+</td><td>4</td><td>_ إ</td><td>Н</td><td>+</td><td>ш</td></snecifi<>		escription tructure>			note	IZIPIA	P	14	1	H	H	-	++	+	+	4	_ إ	Н	+	ш
				ck for power s	supply)		А														
	Horizont	al type	Power inlet,			note1	D		11	11				1 1	1		1	1	1 1	1	
	<mounti< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i</td><td></td><td></td><td></td><td>i</td><td>i</td><td></td><td></td><td></td></mounti<>												i				i	i			
6	19inch ra	ack mou	nting type El mponent (ND	A conformity				В	++	! !	÷	+ 1	÷	+	+	+	÷	÷	! !	÷	
					4th component												1				
	None	-			-	note2		Υ									- }	-			
	NO	-	-		-			Р			Н										
	SO ₂	-	-		-			A									-				
	CO ₂ CO	-			[-			B													
	CH₄							E	Ш	H.	Ш									.]	
	NO	S	D ₂	 ·	-			F	777	H	111	17		Π	-		- 1	Ī		7	
	NO	C		•	-			G			Н										
	SO ₂ CO ₂	CO		•	-			삠													
- 1	CH ₄	C			-			K					- 1				- 1	-		-	
- 1	CO ₂	CH			-			Ĺ			Н										
	NO	S		CO	-			N	111	Ш	111	1		П	1		7	T		7	
	CO ₂	CO		CH₄	-			T					- [İ			
	NO Othoro	S)2	CO ₂	СО			V													
,	Others <measur< td=""><td>rable co</td><td>mponent (O₂)</td><td>></td><td></td><td></td><td></td><td>-14</td><td>H</td><td>11</td><td>H</td><td>H</td><td>+</td><td>+ +</td><td>+</td><td>+</td><td>- 1</td><td>+</td><td>H</td><td>+</td><td></td></measur<>	rable co	mponent (O ₂)	>				-14	H	11	H	H	+	+ +	+	+	- 1	+	H	+	
- 1	None	00						Y	/									-			
- 1	External		,			note3		1													
			O ₂ analyzer					2	2		П						i	į.			
			fuel cell O2 a Inetic O2 anal					3	1				-				- 1	-			
	<revisio< td=""><td></td><td></td><td>y 2 0 1</td><td></td><td></td><td></td><td>14</td><td>2</td><td></td><td>$^{++}$</td><td>+</td><td>+</td><td></td><td>+</td><td></td><td>+</td><td>+</td><td>1</td><td>+</td><td></td></revisio<>			y 2 0 1				14	2		$^{++}$	+	+		+		+	+	1	+	
)	<measu< td=""><td>ring ran</td><td>ge (NDIR)>1s</td><td>t component,</td><td></td><td>note4</td><td></td><td></td><td></td><td>ÌΤ</td><td></td><td></td><td>i</td><td></td><td>T</td><td></td><td>i</td><td></td><td></td><td></td><td></td></measu<>	ring ran	ge (NDIR)>1s	t component,		note4				ÌΤ			i		T		i				
$\overline{}$				t component,		note4									I						
\rightarrow				d component		note4					Щ	+	+	1 1	+	-	-	+	1	+	
2				d component d component,		note4						+	+	H	-	+	÷	+	-	÷	
1	<measu< td=""><td>ring ran</td><td>ge (NDIR)>3rd</td><td>d component,</td><td>2nd range</td><td>note4</td><td></td><td></td><td></td><td></td><td></td><td>ш</td><td>Ť</td><td>H</td><td>$^{+}$</td><td>+</td><td>÷</td><td>+</td><td>1</td><td>+</td><td></td></measu<>	ring ran	ge (NDIR)>3rd	d component,	2nd range	note4						ш	Ť	H	$^{+}$	+	÷	+	1	+	
5	<measu< td=""><td>ring ran</td><td>ge (NDIR)>4th</td><td>n component,</td><td>1st range</td><td>note4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>П</td><td>I</td><td></td><td>-</td><td>1</td><td></td><td></td><td></td></measu<>	ring ran	ge (NDIR)>4th	n component,	1st range	note4								П	I		-	1			
				n component,	2nd range	note4									Ţ	\Box	-	-			
	<measu None</measu 	ring ran	ge (O ₂)>			note4											1				
- 1	None 0-5/10vo	1%													1		i	i			
- 1	0-5/25vo														É	3					
	0-10/25v]]												i.		. J	
- 1	0-5vol%														L	-	-	-			
- 1	0-10vol% 0-25vol%														ľ	/					
- 1	0-23vol7 0-50vol9														ľ						
	0-100vol														- F	₹	-1-	†-		1	
	100-95v	ol%													5	3					
	Others <gas co<="" td=""><td>nnootion</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Z</td><td>4</td><td>+</td><td>+</td><td>-</td><td>+</td><td></td></gas>	nnootion													Z	4	+	+	-	+	
	Rc1/4	mection	1>													1					
	NPT1/4															2		1			
9	<output< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\top</td><td>1</td><td></td><td>1</td><td></td></output<>																\top	1		1	
	0-1V DC																A	-	Н		
	4–20mA 0–1V DC		nunication														B C	1		i	
- 1			mmunication	l													D	-			
0	<indicati< td=""><td>ion/pow</td><td>er supply cor</td><td>d></td><td></td><td>note5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\top</td><td>\top</td><td></td><td></td><td></td></indicati<>	ion/pow	er supply cor	d>		note5											\top	\top			
	Japanes			25V (PSE)														1	H		
	English, English,			25V (UL) 250V (CEE)													E				
	English, Chinese,			250V (CEE)																	
				on average o	utput>	note6											-15	-1	Η	1	
	None			-															Y		
	O2 corre		oroge																A		
	O ₂ corre		⁄erage d O₂ correctio	n average															B C		
	<option:< td=""><td>al functi</td><td>on (DIO)></td><td>ni average</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>띡</td><td>Ť</td><td></td></option:<>	al functi	on (DIO)>	ni average															띡	Ť	
	FAULT		H/L Alarm	RangeID/Re	emote range																
	None																		ŀ	Υ	
	0	_																	/	4	
	0	0																	إ		
	0																		[5	
l			 	t																<u> </u>	
			_																	FΙ	
	0																				
		00		000		note7													(A B C D E F G	

			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 < Di
Digit	Description	note	
23	<pressure compensation=""></pressure>		
	None		Y
	Pressure compensation		[1]
24	<unit></unit>		
	ppm, vol%		
	mg/m³, g/m³	note8	B :
25	<adjustment></adjustment>	note9	
	For standard		A
	For heat treatment furnace	note10	C
	For converter		D
	Others		Z
26	<others></others>		
	Non-standard	1	z

NDIR range codes

-	
Range	Code
None	Υ
0 to 100ppm	В
0 to 200ppm	C
0 to 250ppm	D
0 to 300ppm	S
0 to 500ppm	E
0 to 1000ppm	F
0 to 2000ppm	G
0 to 2500ppm	U
0 to 3000ppm	T
0 to 5000ppm	H
	1

Range	Code
0 to 1vol%	J
0 to 2vol%	K
0 to 3vol%	Q
0 to 5vol%	L
0 to 10vol%	M
0 to 20vol%	N
0 to 25vol%	V
0 to 40vol%	W
0 to 50vol%	P
0 to 70vol%	Х
0 to 100vol%	R
Others	Z

O₂ range codes

Measurement range	Range code	Galvanic fuel cell (built - in)	Paramagnetic cell (built - in)	Zirconia cell (external)
0 to 5/10 vol%	Α		onote11	0
0 to 5/25 vol%	В		onote11	0
0 to 10/25 vol%	С	0	0	0
0 to 5 vol%	L		onote11	0
0 to 10 vol%	M	0	0	0
0 to 25 vol%	V	0	0	0
0 to 50 vol%	Р		0	
0 to 100 vol%	R		0	
100 to 95 vol%	S		Ö	

- note1) If you select "D" in the 4th code, the analyzer comes with the power cable. Specify the rating of the power cable in the 20th code.
- note2) If you use this analyzer only for oxygen measurement, select "Y" in the 6th code.
- note3) If you use an external O_2 sensor (7th code "1"), set 0-1 V DC linear signals from the external O_2 analyzer so that they corresponds to the full scale setting of the analyzer.
 - Note that the external O_2 analyzer (7th code"1") and the external zirconia O_2 sensor ZFK7 (7th code "2") need to be ordered separately.
- note4) Check the possible combination of measuring components and ranges in Table 1. Specify the range with the range codes shown in the above tables.
- note5) If you select "D" in the 4th code, select the appropriate cable specification for end user in the 20th code.

 If you select "A" in the 4th code, the power cable is not supplied. If you need no power cable and want to order the manual written in English, select "E" in the 20th code.
- note6) O₂ correction is provided only for NO, SO₂, and CO measurement.

 When "H" is specified for the 6th digit, "A, B, or C" cannot be selected for the 21st digit.
- note7) The 22nd code "H" is not available for five-component measurement.

 If you use four-component measurement and select "H" in the 22nd code, the maximum number of the H/L alarm outputs is three.
- note8) Even if you selected "B" in the 24th code, select the range in ppm that is shown in the above "NDIR range codes" table. We will set the analyzer after converting the ppm ranges into mg/m³ ranges. For the converted ranges, see the "ppm-mg/m³ conversion table" shown below.
- note9) When A, C, or D is specified at 25th digit, the analyzer will be adjusted and delivered with the following balance gasses.

Standard "A": balance gas N2

For heat treatment furnace "C": CO₂ analyzer: 25% CO + 30% H₂ + residue N₂

CO analyzer: 5% CO₂ + 30% H₂ + residue N₂

CH₄ analyzer: 25% CO + 30% H₂ + residue N₂

For converter "D": balance gas CO, CO

When other adjustment is required, please select "Z". In that case, please provide a list of gas composition of the process gas.

- note10) When the 25th code is "C", the range codes "X" and "R" are not available.
- note11) NDIR range codes "V", "W", "P", "X", and "R" are not available.

ppm-mg/m³ conversion table

Danga anda	n.n.m		Range in mg/m³	
Range code	ppm	NO	SO ₂	СО
С	0–200	_	_	0–250 mg/m ³
D	0–250	_	_	0-300 mg/m ³
S	0-300	_	_	0-375 mg/m ³
E	0–500	0-650 mg/m ³	0-1400 mg/m ³	0-600 mg/m ³
F	0-1000	0-1300 mg/m ³	0-2800 mg/m ³	0-1250 mg/m ³
G	0–2000	0-2600 mg/m ³	0-5600 mg/m ³	0-2500 mg/m ³
U	0-2500	0-3300 mg/m ³	0-7100 mg/m ³	0-3000 mg/m ³
Т	0-3000	0-4000 mg/m ³	0-8500 mg/m ³	0-3750 mg/m ³
Н	0–5000	0-6600 mg/m ³	0-14.00 g/m ³	0-6250 mg/m ³

Conversion formula NO (mg/m³) = $1.34 \times NO$ (ppm) SO₂ (mg/m³) = $2.86 \times SO_2$ (ppm) CO (mg/m³) = $1.25 \times CO$ (ppm)

Table 1 Measurable component and range - availability check table -

Range selection procedure

One component analyzer:

First determine 1st range, then select 2nd range from the corresponding column.

Two or more component analyzer:

- 1. Check the available options referring to the below tables, and determine the 1st range. Select the corresponding range code from "NDIR range codes" on Page 8.
- 2. The 2nd range must be greater than the 1st range but no greater than the value in the column "2nd range (max.)". Check the available options referring to the below tables, and determine the 2nd range. Select the corresponding range code from "NDIR range codes" on Page 8.

1-component analyzer: CO

2nd range
None, 0 - 250ppm,300ppm,500ppm,1000ppm,2000ppm
None, 0 - 300ppm,500ppm,1000ppm,2000ppm,2500ppm
None, 0 - 500ppm,1000ppm,2000ppm,2500ppm
None, 0 - 1000ppm,2000ppm,2500ppm,3000ppm,5000ppm
None, 0 - 2000ppm,2500ppm,3000ppm,5000ppm,1%
None, 0 - 2500ppm,3000ppm,5000ppm,1%,2%
None, 0 - 3000ppm,5000ppm,1%,2%
None, 0 - 5000ppm,1%,2%
None, 0 - 1%,2%,3%,5%
None, 0 - 2%,3%,5%,10%
None, 0 - 3%,5%,10%,20%
None, 0 - 5%,10%,20%,25%
None, 0 - 10%,20%,25%,40%,50%
None, 0 - 20%,25%,40%,50%,70%,100%
None, 0 - 25%,40%,50%,70%,100%
None, 0 - 40%,50%,70%,100%
None, 0 - 50%,70%,100%
None, 0 - 70%,100%
None, 0 - 100%
None

1-component analyzer : CO2

	, , , , , , , , , , , , , , , , , , , ,
1st range	2nd range
0 - 100ppm	None, 0 - 200ppm,250ppm,300ppm,500ppm,1000ppm
0 - 200ppm	None, 0 - 250ppm,300ppm,500ppm,1000ppm,2000ppm
0 - 250ppm	None, 0 - 300ppm,500ppm,1000ppm,2000ppm,2500ppm
0 - 300ppm	None, 0 - 500ppm,1000ppm,2000ppm,2500ppm
0 - 500ppm	None, 0 - 1000ppm,2000ppm,2500ppm,3000ppm,5000ppm
0 - 1000ppm	None, 0 - 2000ppm,2500ppm,3000ppm,5000ppm,1%
0 - 2000ppm	None, 0 - 2500ppm,3000ppm,5000ppm,1%,2%
0 - 2500ppm	None, 0 - 3000ppm,5000ppm,1%,2%
0 - 3000ppm	None, 0 - 5000ppm,1%,2%
0 - 5000ppm	None, 0 - 1%,2%,3%,5%
0 - 1%	None, 0 - 2%,3%,5%,10%
0 - 2%	None, 0 - 3%,5%,10%,20%
0 - 3%	None, 0 - 5%,10%,20%,25%
0 - 5%	None, 0 - 10%,20%,25%,40%,50%
0 - 10%	None, 0 - 20%,25%,40%,50%,70%,100%
0 - 20%	None, 0 - 25%,40%,50%,70%,100%
0 - 25%	None, 0 - 40%,50%,70%,100%
0 - 40%	None, 0 - 50%,70%,100%
0 - 50%	None, 0 - 70%,100%
0 - 70%	None, 0 - 100%
0 - 100%	None

1-component analyzer: NO

1st range	2nd range
0 - 200ppm	None, 0 - 250ppm,300ppm,500ppm,1000ppm,2000ppm
0 - 250ppm	None, 0 - 300ppm,500ppm,1000ppm,2000ppm,2500ppm
0 - 300ppm	None, 0 - 500ppm,1000ppm,2000ppm,2500ppm
0 - 500ppm	None, 0 - 1000ppm,2000ppm,2500ppm,3000ppm,5000ppm
0 - 1000ppm	None, 0 - 2000ppm,2500ppm,3000ppm,5000ppm
0 - 2000ppm	None, 0 - 2500ppm,3000ppm,5000ppm
0 - 2500ppm	None, 0 - 3000ppm,5000ppm
0 - 3000ppm	None, 0 - 5000ppm
0 - 5000ppm	None

1-component analyzer: SO2

	•
1st range	2nd range
0 - 200ppm	None, 0 - 250ppm,300ppm,500ppm,1000ppm,2000ppm
0 - 250ppm	None, 0 - 300ppm,500ppm,1000ppm,2000ppm,2500ppm
0 - 300ppm	None, 0 - 500ppm,1000ppm,2000ppm,2500ppm
0 - 500ppm	None, 0 - 1000ppm,2000ppm,2500ppm,3000ppm,5000ppm
0 - 1000ppm	None, 0 - 2000ppm,2500ppm,3000ppm,5000ppm,1%
0 - 2000ppm	None, 0 - 2500ppm,3000ppm,5000ppm,1%,2%
0 - 2500ppm	None, 0 - 3000ppm,5000ppm,1%,2%
0 - 3000ppm	None, 0 - 5000ppm,1%,2%
0 - 5000ppm	None, 0 - 1%,2%,3%,5%
0 - 1%	None, 0 - 2%,3%,5%,10%
0 - 2%	None, 0 - 3%,5%,10%
0 - 3%	None, 0 - 10%
0 - 5%	None, 0 - 10%
0 - 10%	None

1-component analyzer: CH4

1-component analyzer . CH4		
1st range	2nd range	
0 - 500ppm	None, 0 - 1000ppm,2000ppm,2500ppm,3000ppm,5000ppm	
0 - 1000ppm	None, 0 - 2000ppm,2500ppm,3000ppm,5000ppm,1%	
0 - 2000ppm	None, 0 - 2500ppm,3000ppm,5000ppm,1%,2%	
0 - 2500ppm	None, 0 - 3000ppm,5000ppm,1%,2%	
0 - 3000ppm	None, 0 - 5000ppm,1%,2%	
0 - 5000ppm	None, 0 - 1%,2%,3%,5%	
0 - 1%	None, 0 - 2%,3%,5%,10%	
0 - 2%	None, 0 - 3%,5%,10%,20%	
0 - 3%	None, 0 - 5%,10%,20%,25%	
0 - 5%	None, 0 - 10%,20%,25%,40%,50%	
0 - 10%	None, 0 - 20%,25%,40%,50%,70%,100%	
0 - 20%	None, 0 - 25%,40%,50%,70%,100%	
0 - 25%	None, 0 - 40%,50%,70%,100%	
0 - 40%	None, 0 - 50%,70%,100%	
0 - 50%	None, 0 - 70%,100%	
0 - 70%	None, 0 - 100%	
0 - 100%	None	

2-component analyzer: NO/SO₂

2-component analyzer . NO/302				
1-component		2		
1st range	2nd range (max.)			
0 - 200ppm	0 - 2000ppm			
0 - 250ppm	0 - 2500ppm			
0 - 300ppm	0 - 2500ppm	Select the second component from		
0 - 500ppm	0 - 5000ppm	the table on the		
0 - 1000ppm	0 - 5000ppm	 		
0 - 2000ppm	0 - 5000ppm			
0 - 2500ppm	0 - 5000ppm			
0 - 3000ppm	0 - 5000ppm			
0 - 5000ppm	None	(

2		
	2-component	t : SO ₂
	1st range	2nd range (max.)
	0 - 200ppm	0 - 2000ppm
	0 - 250ppm	0 - 2500ppm
i	0 - 300ppm	0 - 2500ppm
	0 - 500ppm	0 - 5000ppm
/	0 - 1000ppm	0 - 5000ppm
1	0 - 2000ppm	0 - 5000ppm
	0 - 2500ppm	0 - 5000ppm
	0 - 3000ppm	0 - 5000ppm
	0 - 5000ppm	None

2-component analyzer : NO/CO

	,			
1-componen	t : NO		2-componen	t : CO
1st range	2nd range (max.)		1st range	2nd range (max.)
0 - 200ppm	0 - 2000ppm		0 - 200ppm	0 - 2000ppm
0 - 250ppm	0 - 2500ppm		0 - 250ppm	0 - 2500ppm
0 - 300ppm	0 - 2500ppm	Select the second	0 - 300ppm	0 - 2500ppm
0 - 500ppm	0 - 5000ppm	component from the table on the right.	0 - 500ppm	0 - 5000ppm
0 - 1000ppm	0 - 5000ppm	ingin. → <	0 - 1000ppm	0 - 5000ppm
0 - 2000ppm	0 - 5000ppm		0 - 2000ppm	0 - 5000ppm
0 - 2500ppm	0 - 5000ppm		0 - 2500ppm	0 - 5000ppm
0 - 3000ppm	0 - 5000ppm		0 - 3000ppm	0 - 5000ppm
0 - 5000ppm	None	(0 - 5000ppm	None

2-component analyzer : SO₂/CO₂

= 00poo aa., zo 002, 003				
1-componen	Select the second			
1st range	2nd range (max.)	component from the table on the		
0 - 200ppm	0 - 2000ppm	right.		
0 - 250ppm	0 - 2500ppm			
0 - 300ppm	0 - 2500ppm			
0 - 500ppm	0 - 5000ppm			
0 - 1000ppm	0 - 5000ppm			
0 - 2000ppm	0 - 5000ppm			
0 - 2500ppm	0 - 5000ppm			
0 - 3000ppm	0 - 5000ppm			
0 - 5000ppm	None			
	•			

d	2-component : CO ₂		
	1st range	2nd range (max.)	
>	0 - 10%	0 - 25%	

2-component analyzer: CO₂/CO

· · · · · · · · · · · · · · · · · · ·	t analyzer: CO	
1-componen		2-component: CO
	2nd range (max.)	1st range/2nd range (max.)
0-100ppm	0-1000ppm	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/2500ppm, 0-1000/2500ppm, 0-2000/2500ppm, 0-2500ppm
0-200ppm	0-2000ppm	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/5000ppm, 0-1000/5000ppm, 0-2000/5000ppm, 0-2500/5000ppm,
0-250ppm	0-2500ppm	0-3000ppm/2%, 0-5000ppm/3%, 0-1/3%, 0-2/3%, 0-3%
0-300ppm		
0-500ppm		
0-500ppm	0-5000ppm	0-500/5000ppm, 0-1000/5000ppm, 0-2000/5000ppm, 0-2500/5000ppm, 0-3000ppm/2%, 0-5000ppm/3%, 0-1/3%, 0-2/3%, 0-3%
0-1000ppm	0-5000ppm	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%,
0-2000ppm	1	0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/10%, 0-3/10%, 0-5/50%, 0-10/50%, 0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-1000ppm	0-1%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/10%,
о тоооррии	0 170	0-3/10%, 0-5/50%, 0-10/50%, 0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-2000ppm	0-1%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/10%,
0-2000ppiii	0-1/6	
0.0000	0.00/	0-3/25%, 0-5/50%, 0-10/50%, 0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-2000ppm	0-2%	0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/10%, 0-3/25%, 0-5/50%, 0-10/50%,
		0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-2500ppm	0-1%	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%,
		0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/10%, 0-3/25%, 0-5/50%, 0-10/50%, 0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-2500ppm	0-2%	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%,
		0-1/10%, 0-2/10%, 0-3/25%, 0-5/50%, 0-10/50%, 0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-3000ppm	0-1%	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%,
		0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/10%, 0-3/25%, 0-5/50%, 0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%,
		0-50/100%, 0-70/100%, 0-100%
0-3000ppm	0-2%	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%,
	/-	0-5000ppm/5%, 0-1/10%, 0-2/10%, 0-3/25%, 0-5/25%, 0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%,
		0-70/100%, 0-100%
0-5000ppm	0-3%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%,
0-1%	0-5%	0-3/25%, 0-5/50%, 0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-2%	0-5%	
0-5000ppm	0-5%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%,
		0-3/25%, 0-5/50%, 0-10/50%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-1%	0-10%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%,
		0-3/25%, 0-5/25%, 0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-2%	0-20%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%,
		0-3/25%, 0-5/50%, 0-10/50%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-2%	0-10%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%,
0-3%	0-25%	0-3/25%, 0-5/50%, 0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-5%	0-50%	
0-10%	0-100%	0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%,
0-20%	1	0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-25%	1	0 10/100/6, 0 20/100/6, 0 20/100/6, 0-40/100/6, 0-30/100/6, 0-100/6
	-	
0-40%	-	
0-50%	-	
	1	
0-70% 0-100%	None	

2-component analyzer: CH₄/CO

2 componen	t dildiyzor. Ori	
1-componen	t: CH4	2-component: CO
1st range	2nd range (max.)	1st range/2nd range (max.)
0-500ppm	0-5000ppm	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/2500ppm, 0-1000/2500ppm, 0-2000/2500ppm
0-1000ppm	0-5000ppm	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/5000ppm, 0-1000/5000ppm, 0-2000/5000ppm, 0-2500/5000ppm, 0-3000/5000ppm
0-1000ppm	0-1%	0-500/5000ppm, 0-1000/5000ppm, 0-2000/5000ppm, 0-2500/5000ppm, 0-3000/5000ppm
0-2000ppm	0-5000ppm	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/5%,
о дооорр	о оссорр	0-1/5%, 0-2/20%, 0-3/20%, 0-10/20%
0-2500ppm	0-5000ppm	0-200/20000ppm, 0-250/25000ppm, 0-300/2500ppm, 0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1% 0-3000ppm/1%,
0-3000ppm	о оссорр	0-5000ppm/5%, 0-1/5%, 0-2/20%, 0-3/25%, 0-5/25%, 0-10/25%
0-2000ppm	0-1%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/5%, 0-1/5%, 0-2/20%, 0-3/20%, 0-10/20%
0-2500ppm	0-1%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2000ppm/1%, 0-3000ppm/1%, 0-5000ppm/5%, 0-1/5%, 0-2/20%, 0-3/25%, 0-5/25%, 0-10/25%
0-3000ppm	0-170	0-300/30000ррпп, 0-1000ррпп 1 /0, 0-2000ррпп 1 /0, 0-2000ррпп 1 /0, 0-3000ррпп 1 /0, 0-3000
0-2000ppm	0.20/	0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/5%, 0-1/5%, 0-2/20%, 0-3/20%, 0-5/20%, 0-10/20%
	0-2%	U-1000ppm1/1%, 0-2000ppm1/1%, U-2500ppm1/1%, U-3000ppm1/1%, U-300ppm1/3%, U-1075%, U-2720%, U-3720%, U
0-2500ppm	0-2%	0-100uppm/1%, 0-200uppm/1%, 0-250uppm/1%, 0-300uppm/1%, 0-500uppm/5%, 0-1/5%, 0-2/20%, 0-3/25%, 0-5/25%, 0-10/25%
0-3000ppm	0.40/	2 CONTROL
0-5000ppm	0-1%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/5%, 0-1/5%, 0-2/20%,
		0-3/25%, 0-5/50%, 0-10/50%, 0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-5000ppm	0-3%	0.1000 ppm/1%, 0.2000 ppm/1%, 0.2500 ppm/1%, 0.3000 ppm/1%, 0.5000 ppm/5%, 0.1/5%, 0.2/10%, 0.3/25%, 0.5/50%, 0.10/50%, 0.20/50%, 0.25/50%, 0.40/50%, 0.50%, 0.50%, 0.20/50%,
0-5000ppm	0-5%	0.1000 ppm/1%, 0.2000 ppm/1%, 0.2500 ppm/1%, 0.3000 ppm/1%, 0.5000 ppm/5%, 0.1/5%, 0.2/5%, 0.3/25%, 0.5/25%, 0.10/50%, 0.20/50%, 0.25/50%, 0.40/50%, 0.5000 ppm/5%, 0.1/5%, 0.2/5%, 0.3/25%, 0.3/25%, 0.10/50%, 0.20/5
0-1%	0-5%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/5%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%, 0-10/100%,
		0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-1%	0-10%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/1%, 0-1/10%, 0-2/10%, 0-3/10%, 0-5/50%, 0-10/50%,
		0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-2%	0-10%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/20%, 0-5/50%, 0-10/100%,
		0-20/100%,0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-2%	0-20%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/20%, 0-5/20%, 0-10/100%,
		0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-3%	0-10%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/20%, 0-5/50%, 0-10/100%,
		0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-3%	0-25%	0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/20%, 0-5/20%, 0-10/100%, 0-20/100%, 0-25/100%,
		0-40/100%. 0-50/100%. 0-70/100%. 0-100%
0-5%	0-25%	0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/5%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/25%, 0-10/100%, 0-20/100%, 0-25/100%,
		0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-5%	0-50%	0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/5%, 0-1/5%, 0-2/5%, 0-3/25%, 0-5/25%, 0-10/100%, 0-20/100%, 0-25/100%,
		0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-10%	0-50%	0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/5%, 0-1/10%, 0-2/10%, 0-3/25%, 0-5/50%, 0-10/50%, 0-20/100%, 0-25/100%,
		0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-10%	0-100%	0-5000ppm/5%, 0-1/10%, 0-2/10%, 0-3/10%, 0-5/50%, 0-10/50%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-20%	0-50%	0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/1%, 0-0-1000ppm/1%, 0-1000ppm/1%, 0-1000ppm/1%, 0-2500ppm/1%,
0-25%	0 00 /0	0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-25%	1	0.40/100/0, 0.00/100/0, 0.70/100/0, 0.100/0
0-40%	0-100%	0-5000ppm/5%, 0-1/10%, 0-2/20%, 0-3/20%, 0-5/50%, 0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-25%	0-100%	0-2000ppinis /6, 0-1/10 /6, 0-2/20 /6, 0-3/20 /6, 0-3/20 /6, 0-10/100 /6, 0-20/100 /6, 0-20/100 /6, 0-30/100 /6, 0-30/100 /6, 0-10/100 /6, 0-10/100 /6
0-25%	-	
0-40%	-	
	-	
0-70%		
0-100%	None	

2-component analyzer: CO₂/CH₄

2-componen	t analyzer: CC	12/CH4
1-componen		2-component: CH ₄
1st range	2nd range (max.)	1st range/2nd range (max.)
0-100ppm	0-1000ppm	0-500/5000ppm, 0-1000/5000ppm, 0-2000/5000ppm, 0-2500/5000ppm, 0-3000/5000ppm, 0-5000ppm
0-200ppm	0-2000ppm	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/1%, 0-5000ppm/1%, 0-1%
0-250ppm	0-2500ppm	
0-300ppm	0-2500ppm	
0-500ppm	0-2500ppm	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/2%, 0-2/10%, 0-3/10%, 0-5/10%, 0-10%
0-500ppm	0-5000ppm	0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/2%, 0-2/10%, 0-3/10%, 0-5/10%, 0-10%
0-1000ppm	0-2500ppm	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/3%, 0-1/3%, 0-2/20%, 0-3/20%, 0-5/20%, 0-10/20%, 0-20%
0-1000ppm	0-5000ppm	0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/3%, 0-1/3% 0-2/20%, 0-3/20%, 0-5/20%, 0-10/20%, 0-20%
0-1000ppm	0-1%	0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/3%, 0-1/3%, 0-2/20%, 0-3/20%, 0-5/20%, 0-10/20%, 0-20%
0-2000ppm	0-2500ppm	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/5%, 0-2/20%, 0-3/20%, 0-5/20%, 0-10/20%, 0-20%
0-2000ppm	0-5000ppm	0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/5%, 0-2/20%, 0-3/20%, 0-5/20%, 0-10/20%, 0-20%
0-2000ppm	0-2%	0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/5%, 0-2/20%, 0-3/20%, 0-5/20%, 0-10/20%, 0-20%
0-2500ppm	0-5000ppm	0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/5%, 0-2/20%, 0-3/20%, 0-5/25%, 0-10/25%, 0-20/25%, 0-25%
0-2500ppm	0-2%	0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/5%, 0-2/20%, 0-3/20%, 0-5/25%, 0-10/25%, 0-20/25%, 0-25%
0-3000ppm	0-2%	0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/5%, 0-1/5%
0-5000ppm	0-3%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/20%, 0-5/50%, 0-10/50%,
		0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-5000ppm	0-5%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/20%, 0-5/20%, 0-10/50%,
		0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-1%	0-10%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%, 0-10/50%,
		0-20/50%, 0-25/50%, 0-40/50%, 0-50%
0-2%	0-20%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/10%, 0-3/10%, 0-5/25%, 0-10/100%,
		0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-2%	0-10%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%, 0-10/100%,
0-3%		0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-3%	0-25%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/25%, 0-10/100%,
		0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-5%	0-20%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%, 0-10/100%,
		0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-5%	0-50%	0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%, 0-10/50%, 0-20/100%, 0-25/100%,
		0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-10%	0-20%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%, 0-10/100%,
		0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-10%	0-50%	0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%, 0-10/100%, 0-20/100%, 0-25/100%,
0-20%	1	0-40/100%, 0-50/100%, 0-70/100%, 0-100%
0-25%	1	
0-40%	1	
0-10%	0-100%	0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/10%, 0-3/10%, 0-5/50%, 0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%,
		0-50/100%, 0-70/100%, 0-100%
0-20%	0-100%	0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/10%, 0-3/25%, 0-5/50%, 0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%,
		0-50/100%, 0-70/100%, 0-100%
0-25%	0-100%	0-2000ppm/2%, 0-2500ppm/2%, 0-3000ppm/2%, 0-5000ppm/2%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%, 0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%,
0-40%	1	0-50/100%, 0-70/100%, 0-100%
0-50%	1	
0-70%	1	
0-100%	None	

1-componen	t: NO
1st range	2nd range (max.)
0-200ppm	0-2000ppm
0-250ppm	0-2500ppm
0-300ppm	0-2500ppm
0-500ppm	0-5000ppm
0-1000ppm	0-5000ppm
0-2000ppm	0-5000ppm
0-2500ppm	0-5000ppm
0-3000ppm	0-5000ppm
0-5000ppm	None

		La
2-component	t: SO ₂	3-component: CO
1st range	2nd range (max.)	1st range/2nd range (max.)
0-200ppm	0-2000ppm	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/2500ppm, 0-1000/2500ppm,
0-250ppm	0-2500ppm	0-2000/2500ppm, 0-2500ppm
0-300ppm		
0-500ppm	0-2500ppm	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/5000ppm, 0-1000/5000ppm,
0-1000ppm		0-2000/5000ppm, 0-5000ppm
0-2500ppm	None	
0-1000ppm	0-5000ppm	0-500/5000ppm, 0-1000/5000ppm, 0-2000/5000ppm, 0-2500/5000ppm, 0-3000/5000ppm,
0-2000ppm		0-5000ppm
0-2500ppm		
0-3000ppm		
0-5000ppm	None	

3-component analyzer: CO₂/CO/CH₄ >>> Combination of 1st component CO₂ / 2nd component CO and 3rd component CH₄

o component analyzer. Gozz Gozz Gozz Gozz Gozz Gozz Gozz Goz						
1-component: CO ₂		2-component: CO				
1st range	2nd range (max.)	1st range/2nd range (max.)				
0-5000ppm	0-3%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%,				
0-1%	0-5%	0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%,				
0-2%	0-5%	0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%				
0-5000ppm	0-5%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/2%, 0-2500ppm/2%,				
		0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%,				
		0-10/50%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%				
0-1%	0-10%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%,				
		0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/25%,				
		0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%				
0-2%	0-20%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%,				
		0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%,				
		0-10/50%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%				
0-2%	0-10%	0-500/5000ppm, 0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%,				
0-3%	0-25%	0-3000ppm/2%, 0-5000ppm/5%, 0-1/10%, 0-2/20%,0-3/25%, 0-5/50%,				
0-5%	0-50%	0-10/100%, 0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%				
0-10%	0-100%	0-1000ppm/1%, 0-2000ppm/1%, 0-2500ppm/1%, 0-3000ppm/2%,				
0-20%	1	0-5000ppm/5%, 0-1/10%, 0-2/20%, 0-3/25%, 0-5/50%, 0-10/100%,				
0-25%	1	0-20/100%, 0-25/100%, 0-40/100%, 0-50/100%, 0-70/100%, 0-100%				
0-40%	1					
0-50%	1					
0-70%	1					
0-100%	None					

COII	iponent Cn4			
	3-component	t: CH4		
	1st range	2nd range (max.)	Availability of product	
	0-5000ppm	0-5%	Product available only	
			when CO analyzer max.	
			measuring range is	
+			50% or less	
	0-1%	0-10%	Product available	
	0-2%	0-20%		
	0-3%	0-25%	Product available only	
	0-5%	0-10%	when CO analyzer	
			measuring range is 0 to	
	0-10%	0-20%	1000ppm or more.	
	0-20%	0-25%	Product available only	
	0-25%	0-40%	when CO analyzer	
			measuring range is 0 to	
	0-40%	0-50%	5000ppm or more.	
	0-50%	0-70%	Available only when the CO analyzer range	
	0-70%	0-100%	is 0–5000 ppm or more, and the CO ₂ analyzer	
	0-100%	None	range is 0-2% or more	

 $4-component\ analyzer:\ NO/SO_2/CO_2/CO\ >>>\ Combination\ of\ 1st\ component\ NO\ /4th\ component\ CO\ and\ component\ 2nd\ component\ SO_2/3rd\ component\ CO_2/2nd\ componen$

1-component: NO		4-component: CO				
1st range	2nd range (max.)	1st range/2nd range (max.)				
0-200ppm	0-2000ppm					
0-250ppm	0-2500ppm					
0-300ppm	0-2500ppm	0.000/000000000000000000000000000000000				
0-500ppm	0-2000ppm	0-200/2000ppm, 0-250/2500ppm, 0-300/2500ppm, 0-500/2500ppm, 0-1000/2500ppm, 0-2000/2500ppm, 0-2500ppm, None				
0-1000ppm	0-2000ppm					
0-2000ppm	None					
0-500ppm	0-5000ppm					
0-1000ppm	0-5000ppm					
0-2000ppm	0-5000ppm	0-500/2500ppm, 0-1000/2500ppm, 0-2000/2500ppm, 0-2500ppm, None				
0-2500ppm	0-5000ppm	0-300/2300ppm, 0-1000/2300ppm, 0-2000/2300ppm, 0-2300ppm, None				
0-3000ppm	0-5000ppm					
0-5000ppm	None					
	-					

+

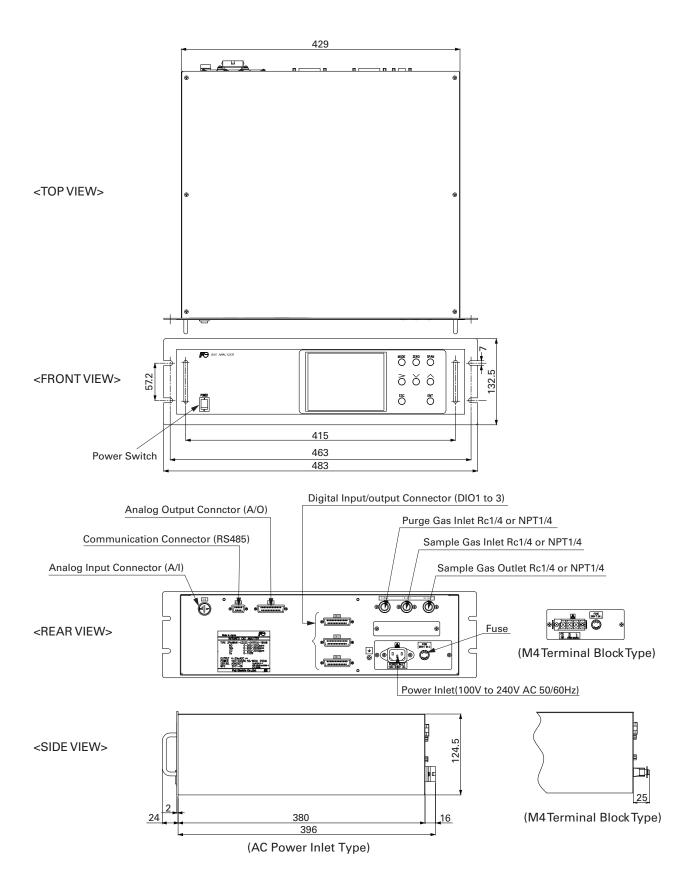
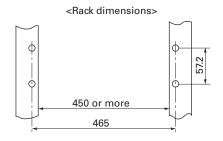
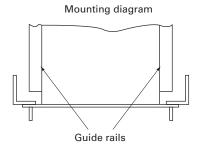

2-component analyzer: SO2		3-component analyzer: CO2
1st range	2nd range (max.)	1st range/2nd range (max.)
0-200ppm	0-2000ppm	
0-250ppm	0-2500ppm	
0-300ppm	0-2500ppm	
0-500ppm	0-5000ppm	
0-1000ppm	0-5000ppm	0-1/10%, 0-2/20%, 0-3/20%, 0-5/50%, 0-10/50%, 0-20/50%, 0-25/50%, 0-40/50%, 0-50%/None
0-2000ppm	0-5000ppm	
0-2500ppm	0-5000ppm	
0-3000ppm	0-5000ppm	
0-5000ppm	None	

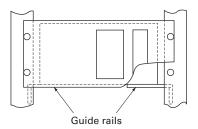
Table 2 Channel (Ch) No. and display/output contents comparison table

Code symbol			
6th digit	7th digit	21st digit	Display/output contents
Y	1 to 4	Υ	Ch1:O ₂
Р	Υ	Υ	Ch1:NO
Α	Υ	Υ	Ch1:SO ₂
D	Υ	Υ	Ch1:CO ₂
В	Y	Y	Ch1:CO
E	Υ	Υ	Ch1:CH4
F	Υ	Y	Ch1:NO, Ch2:SO ₂
G	Υ	Υ	Ch1:NO, Ch2:CO
Н	Υ	Υ	Ch1:SO ₂ , Ch2:CO ₂
J	Υ	Υ	Ch1:CO ₂ , Ch2:CO
K	Υ	Υ	Ch1:CH4, Ch2:CO
L	Υ	Y	Ch1:CO ₂ , Ch2:CH ₄
N	Υ	Υ	Ch1:NO, Ch2:SO ₂ , Ch3:CO
Т	Υ	Υ	Ch1:CO ₂ , Ch2:CO, Ch3:CH ₄
V	Υ	Υ	Ch1:NO, Ch2:SO ₂ , Ch3:CO ₂ , Ch4:CO
P	1 to 4	Y	Ch1:NO, Ch2:O2
Α	1 to 4	Y	Ch1:SO ₂ , Ch2:O ₂
D	1 to 4	Y	Ch1:CO ₂ , Ch2:O ₂
В	1 to 4	Y	Ch1:CO, Ch2:O2
E	1 to 4	Y	Ch1:CH ₄ , Ch2:O ₂
F	1 to 4	Y	Ch1:NO, Ch2:SO ₂ , Ch3:O ₂
G	1 to 4	Y	Ch1:NO, Ch2:CO, Ch3:O2
Н	1 to 4	Y	Ch1:SO ₂ , Ch2:CO ₂ , Ch3:O ₂
J	1 to 4	Y	Ch1:CO ₂ , Ch2:CO, Ch3:O ₂
K	1 to 4	Y	Ch1:CH ₄ , Ch2:CO, Ch3:O ₂
L	1 to 4	Y	Ch1:CO ₂ , Ch2:CH ₄ , Ch3:O ₂
N	1 to 4	Y	Ch1:NO, Ch2:SO ₂ , Ch3:CO, Ch4:O ₂
T	1 to 4	Y *	Ch1:CO ₂ , Ch2:CO, Ch3:CH ₄ , Ch4:O ₂
V	1 to 4	Y *	Ch1:NO, Ch2:SO ₂ , Ch3:CO ₂ , Ch4:CO, Ch5:O ₂
P	1 to 4	A *	Ch1:NOx, Ch2:O ₂ , Ch3:corrected NOx
A	1 to 4	A *	Ch1:SO ₂ , Ch2:O ₂ , Ch3:corrected SO ₂
В	1 to 4	A *	Ch1:CO, Ch2:O2, Ch3:corrected CO
F	1 to 4	A *	Ch1:NOx, Ch2:SO ₂ , Ch3:O ₂ , Ch4:corrected NOx, Ch5:corrected SO ₂
G	1 to 4	A *	Ch1:NOx, Ch2:CO, Ch3:O ₂ , Ch4:corrected NOx, Ch5:corrected CO
J	1 to 4	A *	Ch1:CO ₂ , Ch2:CO, Ch3:O ₂ , Ch4:corrected CO
N	1 to 4	A *	Ch1:NOx, Ch2:SO ₂ , Ch3:CO, Ch4:O ₂ , Ch5:corrected NOx, Ch6:corrected SO ₂ , Ch7:corrected CO
V	1 to 4	A *	Ch1:NOx, Ch2:SO ₂ , Ch3:CO ₂ , Ch4:CO, Ch5:O ₂ , Ch6:corrected NOx, Ch7:corrected SO ₂ , Ch8:corrected CO
P	1 to 4	C *	Ch1:NOx, Ch2:O ₂ , Ch3:corrected NOx, Ch4:corrected NOx average
A	1 to 4	C *	Ch1:SO ₂ , Ch2:O ₂ , Ch3:corrected SO ₂ , Ch4:corrected SO ₂ average
В	1 to 4	С	Ch1:CO, Ch2:O2, Ch3:corrected CO, Ch4corrected CO average
F	1 to 4	C *	Ch1:NOx, Ch2:SO ₂ , Ch3:O ₂ , Ch4:corrected NOx, Ch5:corrected SO ₂ , Ch6:corrected NOx average,
'	1 10 4		Ch7:corrected SO ₂ average
G	1 to 4	C *	Ch1:NOx, Ch2:CO, Ch3:O ₂ , Ch4:corrected NOx, Ch5:corrected CO, Ch6:corrected NOx average,
0	1 10 4	*	Ch1:NOx, Ch2:CO, Ch3:O2, Ch4:corrected NOx, Ch5:corrected CO, Ch6:corrected NOx average, Ch7:corrected CO average
J	1 to 4	С	Ch1:CO ₂ , Ch2:CO, Ch3:O ₂ , Ch4:corrected CO, Ch5:corrected CO average
N	1 to 4	C *	Ch1:NOx, Ch2:SO ₂ , Ch3:CO, Ch4:Corrected CO, Ch5:corrected CO average Ch1:NOx, Ch2:SO ₂ , Ch3:CO, Ch4:O ₂ , Ch5:corrected NOx, Ch6:corrected SO ₂ , Ch7:corrected CO,
IN	1 10 4	L	
V	1 +0 /	С	Charles Charle
V	1 to 4		Ch1:NOx, Ch2:SO ₂ , Ch3:CO ₂ , Ch4:CO, Ch5:O ₂ , Ch6:corrected NOx, Ch7:corrected SO ₂ , Ch8:corrected CO, Ch8:corrected NOx, Ch1:corrected SO ₂ , Ch8:corrected CO, Ch8:corrected SO ₂ , Ch1:corrected SO ₂ , Ch8:corrected CO, Ch8:corrected SO ₂ , Ch8:corrected CO, Ch8:corrected SO ₂ , Ch8:corrected SO ₂ , Ch8:corrected CO, Ch8:corrected SO ₂ ,
			Ch9:corrected NOx average, Ch10:corrected SO ₂ average ₂ , Ch11:corrected CO average

 $[\]mbox{\ensuremath{^{\ast}}}$ When the 21st digit code is A or C, the component of the NO analyzer is displayed as NOx.


DIMENSIONS (Unit:mm)

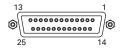



Mounting method

The analyzer weight should be supported at the bottom of the case.

19-inch rack mounting type

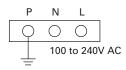
SCOPE OF DELIVERY

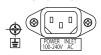

- Gas analyzer ... 1 unit
- Replacement fuse (250V AC, 2A, delay type) ... 2 pcs
- Instruction manual ... 1 copy
- Connector for I/O connection ... 1 set
- When the 4th code is "D": power supply cord (standard inlet type 2m) ... 1 pc

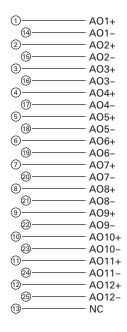
ORDERING INFORMATION

- 1. Code symbols
- 2. Application and composition of sample gas

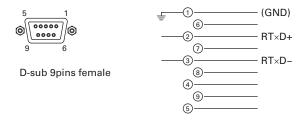
EXTERNAL CONNECTION


<Analog output> A/O connector

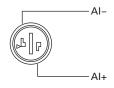

D-sub 25pins female

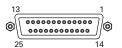

* In standard, displayed Channel No. and Analog Output No. are same.

<Screw terminal (M4)>



<Power inlet>

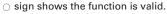



<RS485 communication signal>

<Analog input> A/I connector (O2 signal input)

<Digital I/O> DIO 1 to 3 connector (option)

D-sub 25pins female


 st DIO 1 to 3 are all same type of connector.

Contents of digital input signal

DI1	Remote hold
DI2	Average value reset
DI3	A. cal. start
DI4	A. zero. cal. start
DI5	Remote range Ch1
DI6	Remote range Ch2
DI7	Remote range Ch3
DI8	Remote range Ch4
DI9	Remote range Ch5

Allocation table of digital input signal

							- 0		
22th digit→	Α	В	С	D	Е	F	G	Н	Υ
DI1	0	0	0	0	0	0	0	0	
DI2	0	0	0	0	0	0	0	0	
DI3		0			0		0	0	
DI4		0			0		0	0	
DI5				0		0	0	0	
DI6				0*		0*	0*	0*	
DI7				0*		0*	0*	0*	
DI8				0*		0*	0*	0*	
DI9				0*		0*	0*	0*	

^{*:} The function might be invalid depending on the number of measurable components. For example: DI5 corresponds to 1st component, DI6 corresponds to 2nd components.

Contents of digital output signal

	Independent on the number of component	1-component analyzer			
	number of component			2-component analyzer	3-component analyzer
22th digit →	A, C	B, E	D, F, G, H	B, D, E, F, G, H	B, D, E, F, G, H
DO1	Instrument error	Instrument error	Instrument error	Instrument error	Instrument error
DO2	Calibration error	Calibration error	Calibration error	Calibration error	Calibration error
DO3		A.cal.status	(A.cal.status)	(A.cal.status)	(A.cal.status)
DO4		For zero gas	(For zero gas)	(For zero gas)	(For zero gas)
DO5		For span gas Ch1	(For span gas Ch1)	(For span gas Ch1)	(For span gas Ch1)
DO6	(Alarm1)	(Alarm1)		(For span gas Ch2)	(For span gas Ch2)
D07	(Alarm2)	(Alarm2)			(For span gas Ch3)
DO8	(Alarm3)	(Alarm3)			(Range identification Ch1)
DO9	(Alarm4)	(Alarm4)		(Range identification Ch1)	(Range identification Ch2)
DO10	(Alarm5)	(Alarm5)	Range identification Ch1	(Range identification Ch2)	(Range identification Ch3)
DO11			(Alarm1)	(Alarm1)	(Alarm1)
DO12			(Alarm2)	(Alarm2)	(Alarm2)
DO13			(Alarm3)	(Alarm3)	(Alarm3)
DO14			(Alarm4)	(Alarm4)	(Alarm4)
DO15			(Alarm5)	(Alarm5)	(Alarm5)

The items in the parentheses may not be available depending on the selected type on 22th digit.

The normal open side (NO) of digital output is close when the function is active without range ID.

In case of range ID, normal open (NO) side is close with First range.
The normal close (NC) side is

The normal close (NC) side is close with Second range.

	4-component anal	yzer			5-component analyzer			
22th digit →	B, E	D, F	G	Н	B, E	D, F	G	
DO1	Instrument error	Instrument error	Instrument error	Instrument error	Instrument error	Instrument error	Instrument error	
DO2	Calibration error	Calibration error	Calibration error	Calibration error	Calibration error	Calibration error	Calibration error	
DO3	A.cal.status		A.cal.status	A.cal.status	A.cal.status		A.cal.status	
DO4	For zero gas		For zero gas	For zero gas	For zero gas		For zero gas	
DO5	For span gas Ch1		For span gas Ch1	For span gas Ch1	For span gas Ch1		For span gas Ch1	
DO6	For span gas Ch2		For span gas Ch2	For span gas Ch2	For span gas Ch2	Range identification Ch1	For span gas Ch2	
D07	For span gas Ch3	Range identification Ch1	For span gas Ch3	For span gas Ch3	For span gas Ch3	Range identification Ch2	For span gas Ch3	
DO8	For span gas Ch4	Range identification Ch2	For span gas Ch4	For span gas Ch4	For span gas Ch4	Range identification Ch3	For span gas Ch4	
DO9		Range identification Ch3		Range identification Ch1	For span gas Ch5	Range identification Ch4	For span gas Ch5	
DO10		Range identification Ch4		Range identification Ch2		Range identification Ch5		
DO11	(Alarm1)	(Alarm1)		(Alarm1)	(Alarm1)	(Alarm1)	Range identification Ch1	
DO12	(Alarm2)	(Alarm2)	Range identification Ch1	(Alarm2)	(Alarm2)	(Alarm2)	Range identification Ch2	
DO13	(Alarm3)	(Alarm3)	Range identification Ch2	(Alarm3)	(Alarm3)	(Alarm3)	Range identification Ch3	
DO14	(Alarm4)	(Alarm4)	Range identification Ch3	Range identification Ch3	(Alarm4)	(Alarm4)	Range identification Ch4	
DO15	(Alarm5)	(Alarm5)	Range identification Ch4	Range identification Ch4	(Alarm5)	(Alarm5)	Range identification Ch5	

Zirconia O₂ analyzer (to be purchased separately)

Measuring method:

Zirconia system

Measurable component and measuring range:

Measurable	component	Range
O2	Oxygen	0 to 25vol%

Repeatability: Within ± 0.5% of full scale Within ± 1% of full scale Linearity: Zero drift: Within ± 1% of full scale/week Span drift: Within ± 2% of full scale/week

Response time: Approx. 20 seconds (for 90% response)

Measured gas flow rate:

 $0.5 \pm 0.25 L / min$

Notes:

- If process gas is combustible, measurement error may occur due to oxygen contained in the process gas.
- If process gas is corrosive (for example, SO2 beyond 250 ppm range), the service life of zirconia sensor may be shortened.

Gas inlet/outlet size:

Rc1/4 or NPT1/4

Power supply:

Rated voltage; 100 to 115V AC or 200 to 240V AC

Rated frequency; 50Hz/60Hz

Max. rated power; 215VA (at start up)

65VA (during normal operation)

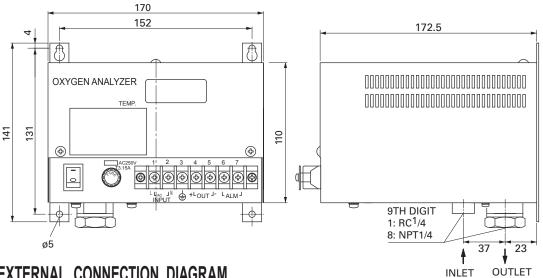
Enclosure: Steel casing, for indoor application **Indication:** Temperature indication (LED)

Temperature alarm output:

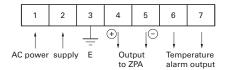
Contact output 1 from A contact.

Contact capacity 220V AC, 1A (resistive load)

Outer dimensions (H x W x D):


141 x 170 x 190mm Weight: Approx. 3kg

Finish color: Munsell 5Y 7/1


CODE SYMBOLS

1 2 3 4 5 6 7 8	9 10 11 12 13	
Z F K 7 Y Y 4 -	YOYY	Description
		Measuring method
7YY		Zirconia method
		Power supply
9		100 to 115V AC 50/60Hz(Standard)
В		200 to 240V AC 50/60Hz(Standard)
C		200 to 240V AC 50/60Hz(CE mark)
		Gas inlet/outlet size
	1	Rc ¹ /4
	8	NPT ¹ / ₄

DIMENSIONS (Unit: mm)

EXTERNAL CONNECTION DIAGRAM

Information in this catalog is subject to change without notice. Read the instruction manuals thoroughly before using the products.

Fuji Electric Co., Ltd.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan

Phone: +81-3-5435-7111 www.fuiielectric.com

www.fujielectric.com/products/instruments/